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ABSTRACT

Large Language Models (LLMs) have made significant strides in text genera-
tion and comprehension, with recent advancements extending into multimodal
LLMs that integrate visual and audio inputs. However, these models continue
to struggle with fine-grained, cross-modal temporal understanding, particularly
when correlating events across audio and video streams. We address these chal-
lenges with two key contributions: a new dataset and model, called OCTAV and
OMCAT respectively. OCTAV (Omni Context and Temporal Audio Video) is a
novel dataset designed to capture event transitions across audio and video. Second,
OMCAT (Omni Context Aware Transformer) is a powerful model that leverages
RoTE (Rotary Time Embeddings), an innovative extension of RoPE, to enhance
temporal grounding and computational efficiency in time-anchored tasks. Through
a robust three-stage training pipeline—feature alignment, instruction tuning, and
OCTAV-specific training—OMCAT excels in cross-modal temporal understanding.
Our model demonstrates state-of-the-art performance on Audio-Visual Question
Answering (AVQA) tasks and the OCTAV benchmark, showcasing significant gains
in temporal reasoning and cross-modal alignment, as validated through comprehen-
sive experiments and ablation studies. Our dataset and code will be made publicly
available. The link to our demo page is https://om-cat.github.io.

1 INTRODUCTION
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Figure 1: Illustration of a video sequence from our proposed OCTAV dataset. The annotations
highlight key moments, including the timing of the audio and visual events.

Large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023) have achieved remarkable
breakthroughs in both text generation and comprehension (McKeown, 1992; Achiam et al., 2023)
tasks. Since then, significant progress has been made to extend LLMs to multimodal LLMs (Cheng
et al., 2024; Li et al., 2023b; Maaz et al., 2023; Li et al., 2024), which integrate visual and audio
inputs with textual instructions to provide understanding in multimodal contexts (Yang et al., 2022b;
Chen et al., 2023a;b). These models, however, are limited in their cross-modal understanding and in
their ability to provide answers to questions with fine-grained timestamps or anchored on events, as
shown in Figure 1. In this paper, we address these limitations by proposing a new dataset OCTAV and
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a model called OMCAT. The Omni Context and Temporal Audio Video dataset, OCTAV, consists of
question-answer pairs for a video. Each question captures the transition between the events happening
in the video through a sound event (e.g. Figure 1). The Omni Context Aware Transformer, OMCAT,
addresses the limitations of existing models (Maaz et al., 2023; Tang et al., 2024; Su et al., 2023;
Cheng et al., 2024) through a unified audio and visual language model by effectively incorporating
time representations to ground the modalities temporally.

Despite the notable progress in multimodal LLMs (Li et al., 2023b; Maaz et al., 2023; Cheng et al.,
2024; Lyu et al., 2023), most advancements have been centered around developing domain specific
models in isolation, typically Video LLMs (Wang et al., 2023; Fu et al., 2024) or Audio LLMs (Gong
et al., 2023; Kong et al., 2024; Chu et al., 2023). However, these models still face challenges in
handling fine-grained, cross-modal temporal understanding when both audio and video are provided.
For instance, if a user asks the question, “Is it raining in the video?” This question can be answered
by either just looking at the video or listening to the audio. However, as shown in Figure 1, if the
user asks the question, “Describe what happens in the video after the sound of children playing?”,
the model must understand both modalities because the sound of children playing cannot be
seen, only heard, and what the man is doing cannot be heard, only seen. Achieving this is
challenging due to several reasons, including the lack of temporally aligned cross-modal datasets,
unified models and benchmarks, and clear understanding of how to combine modalities effectively.

Our goal is to achieve this cross-modal temporal understanding, and to this end we propose an
instruction tuning dataset called OCTAV: Omni Context and Temporal Audio Video. Figure 1 shows
a sample from our proposed OCTAV dataset. Existing audio and video understanding datasets (Chen
et al., 2023b;a; 2020; Geng et al., 2023) only focus on open-ended question answering tasks (Yang
et al., 2022b; Li et al., 2022) for audio-visual events. They lack the ability to temporally ground events
or describe events that involve ambiguity or missing information in one of the modalities. Specifically,
we create question-answer pairs for a video such that each question captures the transition between
the events happening in the video through a sound event. For instance, as shown in Figure 1, we
add the sound event of children playing to the silent input video between 6 to 7 seconds,
during which nothing substantial happens in the video. Then, we capture the video event before
6 seconds and after 7 seconds while using the sound of children playing as a
transition event. This setting encourages the model to not only understand the relationship between
the audio and the video, but also a strong temporal understanding of both the audio and video domains
in a single setup. Despite this artificial setup, our experiments show that a model trained with this
data performs well in naturally occurring video and audio pairs.

While dataset design is necessary, it is not a sufficient condition to achieve cross-modal understanding
given the challenges in modelling such data. As such, we propose a new approach that embeds abso-
lute and relative temporal information in the audio and visual features, improving the model’s ability
to become temporally-aware. With the goal of improving cross-modal and temporal understanding,
and following common practice in multimodal LLMs (Li et al., 2023b; Cheng et al., 2024; Li et al.,
2024; Tang et al., 2024; Fu et al., 2024), we divide model training into 3 stages. The first training
stage is focused on feature alignment, and uses audio-text, video-text, and audio-video-text data (Liu
et al., 2024; Mei et al., 2024; Chen et al., 2023b). In the second stage, the model is instruction-tuned
with data (Luo et al., 2023; Li et al., 2023b; Drossos et al., 2020; Chen et al., 2020) that promotes
temporal and cross-modal understanding. Finally, the model is trained to support complex and
cross-modal temporal data in the OCTAV dataset as shown in Figure 1. We name the model trained
with our proposed OCTAV dataset and the temporal conditioning strategy OMCAT, for OMni Context
Aware Transformer. Through this learning strategy, our method outperforms existing models on
AVQA tasks (Yang et al., 2022b; Li et al., 2022) and beats baselines by a significant margin on our
proposed OCTAV benchmark dataset.

In summary, our main contributions are as follows:
- We introduce a novel method for generating synthetic instruction-tuning dataset, OCTAV, which has
temporal and contextual audio and video question/answer pairs addressing the limitations of existing
datasets. This dataset has both training and evaluation samples to promote research in this direction.
- We propose OMCAT: a unified, temporally-aware audio and visual language model with fine-
grained and cross-modal understanding, achieved through a staged training strategy that leverages all
combinations of audio, video and text data.
- We propose RoTE: a simple yet efficient modification to RoPE that provides better scores on
benchmarks and better computational efficiency than existing approaches for temporal conditioning,
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especially on time-anchored tasks.
- Finally, we exhaustively evaluate OMCAT, including ablations, on a variety of multimodal tasks. Our
experiments demonstrate that our model raises the standards on AVQA tasks, temporal understanding
tasks and our proposed OCTAV benchmark.

2 RELATED WORK
Multimodal LLMs. Since the rise of large language models (LLMs) (Achiam et al., 2023; Chiang
et al., 2023; Touvron et al., 2023), there has been growing interest in integrating additional modali-
ties (Cheng et al., 2024; Gong et al., 2023; Kong et al., 2024). Video LLMs (Li et al., 2023b; Fu et al.,
2024; Wang et al., 2023) utilize video-text datasets to address tasks like video question answering (Xu
et al., 2016; Yu et al., 2019), visual grounding (Kazemzadeh et al., 2014), and understanding temporal
segments (Gao et al., 2017; Huang et al., 2024). These have evolved into multimodal LLMs (Cheng
et al., 2024; Maaz et al., 2023; Lyu et al., 2023), which encode multiple modalities and focus on
coarse-grained tasks like audio-video understanding and question answering (Shu et al., 2023; Chen
et al., 2023a; Yang et al., 2022b). However, these models struggle with fine-grained audio-visual
tasks, where precise synchronization is key to deeper event comprehension.

Recent efforts have attempted to address this. GroundingGPT (Li et al., 2024) predicts fine-grained
timestamps but is limited to sound events, while AVicuna (Tang et al., 2024) takes a more balanced
approach to audio-visual temporal understanding. However, both models fall short in capturing
intricate cross-modal temporal dynamics. Our work aims to address these gaps by focusing on
fine-grained cross-modal information integration.
Instruction tuning datasets. GPT-based methods have been widely used to create datasets for video,
audio, and audio-visual tasks, advancing multimodal models with large-scale resources. In video
understanding, they generate and annotate datasets for tasks like video captioning (Fu et al., 2024),
video question answering (Xu et al., 2016; Yu et al., 2019), and action recognition (Yu et al., 2019).
Similarly, for audio understanding, instruction tuning datasets (Kong et al., 2024; Goel et al., 2024)
target sound events (Salamon et al., 2014), audio captioning (Kim et al., 2019), and audio question
answering (Lipping et al., 2022). Recently, AI-generated datasets have also progressed in audio-visual
tasks like captioning (Chen et al., 2023a), question answering (Yang et al., 2022b), and dialog (Alamri
et al., 2019). Despite this progress, current datasets remain predominantly coarse-grained, lacking
fine-grained temporal and cross-modal synchronization. Our proposed dataset, OCTAV, addresses
this limitation, enabling more precise alignment between audio and visual cues in complex scenarios.

3 THE OCTAV DATASET

One of the challenges in developing models that can understand strongly timestamped and anchored
events is the lack of datasets that have this information (Wang et al., 2023; Liu et al., 2024; Chen
et al., 2020; Li et al., 2023b; Tang et al., 2024; Lyu et al., 2023). To overcome this limitation, we
propose a pipeline to generate a synthetic dataset called OCTAV, for Omni Context Temporal Audio
Video dataset. Figure 1 shows an example from our proposed OCTAV dataset. First, we discuss how
we identify relevant event transitions in videos. Then, we discuss how we anchor those transitions on
audio samples and finally, we show how to generate question-answer pairs for these synthetically
curated videos.

Identifying transitions between video events. To achieve this, we utilize videos with strongly
timestamped captions (Zhou et al., 2018; Krishna et al., 2017; Tang et al., 2019; Zala et al., 2023),
i.e. a video V with time-caption pairs {(t1, c1), (t2, c2) . . . (tk, ck)}, where k is the total number of
time chunks annotated in the video. Given a list of timestamped video captions indexed by i and
bounded by start time (tsi ) and end time (tei ) each, we find pairs where the gap between end time and
start time is smallest than m and the sum of their lengths, from earliest to latest, is at most T seconds.
Empirically we set m = 10 and T = 30, ensuring that the videos are not too far apart and their length
is not too long. Next, we discuss how to anchor sound between these video event transitions.
Anchoring chunked videos on a single sound event. For these chunked videos, we inject a sound
event between the timestamp tei and tsj . More specifically, we randomly sample a sound event s from
a variety of different sound sources (Salamon et al., 2014; Fonseca et al., 2021; Piczak, 2015; Rashid
et al., 2023). Details of these sound sources are provided in Appendix B.4. We remove the original
audio in the given video chunk and insert this sound event between the timestamp {tei , tsj} to create a
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strongly timed video chunk anchored on a sound event. We refer to this subset of the dataset as the
OCTAV-ST dataset where, ST is for single-turn.
Anchoring chunked videos on multiple sound events. We extend the videos from a single sound
event to two sound events as shown in Figure 1. Particularly, we first create a chunked video with
three unique events ci, cj , and ck corresponding to timestamps ti, tj and tk respectively, following the
same procedure discussed previously. Then, we add a random sound event after removing the original
audio between the timestamps {tei , tsj} and {tej , tsk}. We refer to this subset with interwoven and
timestamped videos with audio events as the OCTAV-MT dataset where, MT stands for multi-turn.
Creating question-answer pairs. Here, we discuss how to create question-answer pairs for the
interwoven videos in the OCTAV-ST and OCTAV-MT dataset. Essentially, we have two (or three)
video caption events for each chunked video and an associated audio event/sound between the video
events. The model has to generate questions such that it can capture what event is happening in the
video {before the sound event, after the sound event}, and clarify which of the sound events the user
is referring to while answering the question. We use GPT-assisted (Achiam et al., 2023) generation
to generate a diverse set of question-answer pairs. The prompts used are given in Appendix B.1 and
Appendix B.2 and the list of instructions are given in the Appendix B.3.
Table 1: Statistics with number of videos
and question-answer pairs for the OCTAV-ST
dataset.

Train Test

OCTAV-ST #Videos (QA Pairs) #Videos(QA Pairs)

Youcook2 (Zhou et al., 2018) 6832 2414
ActivityNet (Krishna et al., 2017) 16072 6228

QueryD (Oncescu et al., 2021) 16985 -
COIN (Tang et al., 2019) 31938 -

HiREST (Zala et al., 2023) 2408 -

Total 127,507 8642

Table 2: Statistics with number of videos
and question-answer pairs for the OCTAV-MT
dataset.

Train Test

OCTAV-MT #Videos, #QA Pairs # Videos, #QA Pairs

Youcook2 (Zhou et al., 2018) 4296, 34330 1476, 11806
ActivityNet Krishna et al. (2017) 6463, 51670 1362, 10858

UnAV-100-MT 14698, 94916 2043, 9694

Total 25,457, 180,916 4,881, 32,358

Dataset Statistics. We utilize timestamped videos from Youcook2 (Zhou et al., 2018), QueryD (On-
cescu et al., 2021), ActivityNet (Krishna et al., 2017), COIN (Tang et al., 2019), UnAV-100 (Geng
et al., 2023) and, HiREST (Zala et al., 2023) datasets to create chunked videos. Essentially, we use
these datasets as they have segmented annotations available for videos in diverse domains such as
cooking, daily activities, scenes and instructional videos.

Overall, the OCTAV-ST dataset has 127,507 unique videos with single question-answer pairs for
each video for training. For evaluation, we provide 2414 unique videos with question-answer pairs
from the test subset of Youcook2 (Zhou et al., 2018), denoted as OCTAV-ST-Youcook2 and 6228
unique videos with question-answer pairs from the test subset of the ActivityNet dataset (Krishna
et al., 2017), called as OCTAV-ST-ActivityNet. In Table 1, we show the breakdown of our proposed
OCTAV-ST dataset in detail.

The OCTAV-MT dataset has 25,457 unique videos/multi-turn dialogues with a total of 180,916 single
question-answer pairs for training. In Table 2, we show the detailed statistics of our proposed
OCTAV-MT dataset. Specifically, we curate synthetic chunked videos for Youcook2 and ActivityNet
and use the original videos from UnAV-100 dataset (Geng et al., 2023). The UnAV-100 dataset
has timestamped audio-visual annotations from videos with real-time audio events and we convert
this into question-answer pairs called the OCTAV-MT dataset (e.g. shown in Figure 7). We train
and evaluate on this dataset to show OMCAT’s performance on in-the-wild and naturally occurring
audio-visual settings. For evaluation on this multi-turn setup, we provide a total of 4818 unique
videos with 32,358 question-answer pairs. Example annotations from both the OCTAV-ST and
OCTAV-MT are given in Appendix C.
Table 3: Comparison of our proposed OCTAV dataset with other datasets with respect to modalities
(audio/video), caption availability, multi-turn setup and timestamp information.

Dataset Audio Video Detailed captions Multi-turn Timestamps

InternVid (Wang et al., 2023) ✗ ✓ ✓ ✓ ✓
VALOR (Chen et al., 2023a) ✓ ✓ ✓ ✗ ✗
VAST (Chen et al., 2023b) ✓ ✓ ✓ ✗ ✗
VGG-Sound (Chen et al., 2020) ✓ ✓ ✗ ✗ ✗
UnAV-100 (Geng et al., 2023) ✓ ✓ ✗ ✗ ✓

OCTAV ✓ ✓ ✓ ✓ ✓

Comparison to existing datasets In Table 3, we compare our proposed OCTAV dataset to existing
datasets in the audio and video domains. Most of these datasets are limited to either the video
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modality (Wang et al., 2023), have missing timestamp information (Chen et al., 2023a;b; 2020), do
not offer multi-turn question-answer pairs (Chen et al., 2023a;b; 2020; Geng et al., 2023) or have
single event classes rather than detailed captions (Chen et al., 2020; Geng et al., 2023). OCTAV
dataset addresses all the above mentioned limitations and provides a comprehensive benchmark for
interwoven and fine-grained audio-visual understanding.

4 THE OMCAT APPROACH
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Figure 2: Overview of the OMCAT pipeline. Video frames are processed through a frozen visual
encoder, while audio frames are encoded using a frozen audio encoder. Extracted features are
fine-tuned through adaptor layers across all three stages. The LLM remains frozen in Stage 1 and is
fine-tuned in Stages 2 and 3. The purple blocks represent time alignment modules, with only one of
them activated during training. ∠ in bottom right denotes the rotation angle.

In this section, we describe our proposed OMCAT model, depicted in Figure 2. We begin by discussing
the model architecture and feature extraction in Section 4.1, followed by time alignment between
audio and video in Section 4.2. Next, we discuss the prompt design to query the LLM in Section 4.3
and finally, we detail the multi-stage training process of OMCAT in Section 4.4.

4.1 MODEL ARCHITECTURE AND FEATURE EXTRACTION

Multi-modal Feature Extraction. As shown in Figure 2, OMCAT uses a visual encoder,
fv(.) and an audio encoder, fa(.). Given a video V and an audio A, the encoded hidden features for
the two modalities are represented as:

hv = fv(V ), ha = fa(A) (1)

where hv ∈ RM×dv are the extracted features for the video modality with M frames extracted
uniformly from the video and dv as the hidden dimension. M is 1 if the modality is image. The
features for the audio modality are denoted as ha ∈ RN×da , where N are the time windows for
which the audio features are computed and da is the hidden dimension.
Audio-Visual Adaptors. To map the video modality and audio modality to the text
embedding space of the LLM (Chiang et al., 2023), we use two adaptor blocks: one for the video
modality denoted as V(.) and another for the audio modality denoted asA(.). Essentially, the encoded
hidden features are passed to the adaptors to extract token embeddings as:

v = V(hv), a = A(ha) (2)

These tokens are then used as prompts to the LLM along with the time representations. Following
prior work (Cheng et al., 2024; Li et al., 2024), we use the fine-tuned vicuna 7B-v1.5 (Chiang et al.,
2023) as our LLM to generate the final text responses. Next, we discuss how to incorporate time into
our model.

4.2 TIME ALIGNMENT BETWEEN AUDIO AND VIDEO

Existing multimodal LLMs rely on learnable positional embeddings to encode the order of frames, but
they struggle to capture the absolute time elapsed between frames and lack a fine-grained, cross-modal
understanding of audio and video. We propose two strategies to encode absolute and relative temporal
information on video and audio tokens, called Interleaving Time Tokens (ITT) and Rotary Time
Embeddings (RoTE).
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Interleaving Time Tokens (ITT). In this approach, we interleave time tokens with the audio and the
visual features. We allocate a budget of K learnable time tokens, zero-indexed by ki, and assign a
time token to an audio-visual feature with the following indexing function:

ki = round
(τi
T
· (K − 1)

)
(3)

where τi is a continuous timestamp in seconds, T is the total duration of the video or audio in seconds,
and K is the total number of learnable time tokens.

For a video V with duration T and video token embeddings vi where i = 1 · · ·M , each embedding
is associated with a timestamp τi (e.g. 0.5 seconds, 1.4 seconds, and so forth). We first use these
timestamps to obtain the discrete time tokens, then we interleave them with the visual tokens vi
obtained after the visual adaptor layers. Specifically, each visual token vi corresponds to a discrete
time token indexed by ki, as described in Equation (3). Hence, the interleaved visual sequence is
given as v̄= {v1, < k1 >, v2, < k2 > · · · , < vM >,< kM >}.
Similarly, for the given audio A of duration T , we extract N windows of length w from the audio
sequence such that for each window the time is represented as: τn = [n, n + w] for n =
1, 2, · · · , N , where n is the time in seconds. We then take the mean of the time windows, τn =
n+(n+w)

2 . Then, we convert τn into discrete time token kn using Equation (3) and interleave them
with the audio tokens a obtained from the audio adaptor layers. Hence, the interleaved audio sequence
is represented as ā = {a1, < k1 >, a2, < k2 > · · · , < aN >,< kN >}. The final interleaved tokens
v̄ and ā are then concatenated with the text instructions as prompts to the LLM, as shown in Figure 2
on upper top right.
Rotary Time Embeddings (RoTE). While we could use RoPE (Su et al., 2024) and avoid the extra
context length cost introduced by ITT, RoPE would still lack the ability to capture the absolute time
elapsed between frames, which is very important and crucial in scenarios with varying frame rates.
To address these limitations, we propose an alternative strategy called RoTE: a modified version
of RoPE, where the rotation angles are determined by absolute timestamps in seconds instead of
frame indices. RoTE takes inspiration from a real clock, where each handle rotates at distinct speeds,
or “frequencies”. Similarly, in RoTE we rotate different dimensions in the visual and audio feature
embeddings given their timestamp in seconds and the respective “frequency” of that dimension. Our
results in Section 5 show that RoTE achieves performance that is superior to the baselines. A visual
representation of RoTE is shown in Figure 1 on the lower right bottom.

In practice, while in rope the angle for rotation θ is defined by the temporal indexing of a token
θ ← −i × 2π, RoTE is defined by the absolute time θ ← −τi × 2π. These temporally enriched
features are then passed to the adaptor layers V(.) andA(.) to create visual tokens v and audio tokens
a respectively.

4.3 INSTRUCTION PROMPTS

In this section, we explain how video and audio tokens are combined with text prompts. The prompt
format is as follows:

User: < system prompt > Question < vi start > < vi patch > < vi end > < so start >
< so patch > < so end > < vis start > < vi patch > < so patch > < vis end > Assistant:

Here, < system prompt > represents a guiding system message, following Vicuna-7B (Chiang
et al., 2023). Visual and audio markers are included through tokens like < vi start >/< vi end >
for video and < so start >/< so end > for audio. Video tokens (< vi patch >) encode visual
information, and audio tokens (< so patch >) handle sound data. It is important to note that these
individual video and audio markers are activated only when modality-specific data (video or audio) is
present. For joint audio-video data, < vis start >/< vis end > marks the boundaries, encoding
both audio and video tokens, deactivating the individual representations.

4.4 TRAINING STRATEGY

Stage I: Alignment Tuning Stage. In this stage, we train the visual and audio adaptor layers and
freeze the parameters of the pre-trained visual and audio encoders as well as the LLM, as shown
in Figure 2. By doing so, the model can focus on learning robust features for the adaptor layers,
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Table 4: List of datasets used for training OMCAT. TS indicates if timestamps are available. ST refers
to single-turn question answers. MT is the version with multi-turn dialogue.

Stage Modality Datasets TS #(Modality, Text)

Stage I
Alignment Tuning

Image LLaVA-Pretrain-595k (Liu et al., 2024) ✗ 558128
Audio WavCaps (Mei et al., 2024) ✗ 403044
Video Valley-703K (Luo et al., 2023) ✗ 703000
Video VATEX (Wang et al., 2019) ✗ 227250

Audio-Video VAST (Chen et al., 2023b) ✗ 414602
Audio-Video VALOR (Chen et al., 2023a) ✗ 16109

Stage II
Instruction

Tuning

Image LLaVA-Tune (Liu et al., 2024) ✗ 624610

Audio

VGG Sound (Chen et al., 2020) ✗ 5157
AudioCaps (Kim et al., 2019) ✗ 49838
MusicCaps (Agostinelli et al., 2023) ✗ 2858
Clotho (Drossos et al., 2020) ✗ 3938
Audioset-Strong (Hershey et al., 2021) ✓ 431131

Video

VideoInstruct 100K (Maaz et al., 2023) ✗ 98145
VideoChatGPT (Maaz et al., 2023) ✗ 100010
WebVidQA (Yang et al., 2022a) ✗ 100000
Valley-Instruct 65k (Luo et al., 2023) ✗ 64690
VideoChat-Instruct (Li et al., 2023b) ✗ 6961
Activitynet captions (Krishna et al., 2017) ✗ 7481
NextQA (Xiao et al., 2021) ✗ 34132
DiDeMO (Anne Hendricks et al., 2017) ✓ 27935
Charades (Gao et al., 2017) ✓ 12408
ActivityNet-RTL (Huang et al., 2024) ✓ 33557
Youcook2 (Zhou et al., 2018) ✓ 8643
ActivityNet Dense captions(Krishna et al., 2017) ✓ 33212

Audio-Video

Macaw Instruct (Lyu et al., 2023) ✗ 50656
AVQA (Yang et al., 2022b) ✗ 40425
Music-AVQA (Li et al., 2022) ✗ 25854
UnAV-100 (Geng et al., 2023) ✓ 10358
OCTAV-ST (Ours) ✓ 127507

Stage III
Multi-turn Instruction

Tuning
Audio-Video

AVSD (Alamri et al., 2019) ✗ 159700
UnAV-100-MT (Ours) ✓ 94916
OCTAV-MT (Ours) ✓ 86000

which play a key role in bridging the gap between the raw audio-visual inputs and the semantic
representations of the LLM.

Table 4 lists the image-text pairs (Liu et al., 2024), video-text pairs (Luo et al., 2023; Wang et al.,
2019), and audio-text pairs (Mei et al., 2024) that were used to train the visual and audio adaptor
layers such that the visual and audio representations are “aligned” with their corresponding textual
description. In addition to these individual modalities, we also incorporate joint audio-video-text
paired data (Chen et al., 2023b;a) to simultaneously train both the audio and visual adaptor layers. In
total, we approximately use ∼2.3M training data. This joint training process helps the model develop
a deeper understanding of the relationships between the audio and visual modalities, improving the
model’s ability to handle multimodal data.
Stage II: Instruction Tuning Stage. Following the “alignment” of modality features in Stage I,
we proceed to train OMCAT using a diverse and high-quality collection of multimodal data (∼2.8M).
This includes image-text, video-text, audio-text, and audio-video-text datasets that are carefully
curated to prepare the model for a wide range of tasks involving video and audio. These tasks include
fine-grained timestamped comprehension as well as cross-modal understanding, enabling the model
to perform effectively across multiple input types. A comprehensive overview of the datasets used
in this training phase is provided in Table 4. During this training stage, we freeze the parameters of
both the visual and audio encoders. We only fine-tune the visual and audio adaptor layers, along
with the large language model (LLM), allowing these components to be further optimized to handle
multimodal tasks.
Stage III: Multi-Turn Instruction Tuning Stage. In the third and final stage, our main focus is
to enhance the capabilities of OMCAT on multi-turn question answering in complex audio-visual
scenarios. To achieve this, we fine-tune our model on multi-turn datasets, including our proposed
OCTAV-MT, UnAV-100-MT, and AVSD (Alamri et al., 2019), a dataset for audio-visual dialog.
Detailed statistics of these datasets are shown in Table 4. Overall, we use ∼340k training data during
this stage. In this stage as well, the video encoder and the audio encoder remain frozen while we
optimize the audio/video adaptor layers, along with the LLM.
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5 EXPERIMENTS
Datasets. To evaluate the capabilities of OMCAT on general multimodal understanding, we evaluate
our method on audio-visual understanding benchmarks. Specifically, we evaluate on the AVSD
dataset (Alamri et al., 2019) which is a dataset for audio-visual scene aware dialog, Music-AVQA
dataset (Li et al., 2022) that has audio-visual question answering for the music domain and AVQA
dataset (Yang et al., 2022b) which has general questions about audio and visual modalities.

Furthermore, to evaluate whether OMCAT outperforms in temporal tasks, we measure the performance
of our model on temporal video grounding benchmark, Charades-STA (Gao et al., 2017). This dataset
is widely used in prior works (Cheng et al., 2024; Li et al., 2024; Ren et al., 2024) as a benchmark for
temporal understanding.

Finally, we benchmark OMCAT on the evaluation subset of OCTAV-ST, OCTAV-MT and
UnAV-100-MT datasets. These tasks require fine-grained temporal understanding, cross-correlation
between the audio and visual modalities and hence are a good measure to evaluate the capabilities of
OMCAT.
Evaluation metrics. Following prior work (Cheng et al., 2024; Li et al., 2024; Tang et al., 2024),
we use GPT-4 (Achiam et al., 2023) to evaluate the answers predicted by the model by comparing
against the correct answers, with a score of 0 to 5 indicating the accuracy. Besides Charades-STA
where we use Recall@1 at Intersection over Union (IoU) thresholds of 0.5 and 0.7, we use the GPT
accuracy everywhere else.
Architecture. We use the pre-trained CLIP visual encoder ViT-L/14 (Radford et al., 2021) to extract
video/image features. For the audio encoder, we use the pre-trained ImageBind (Girdhar et al., 2023)
model. Similar to previous work, for the video and audio adaptors, we use the Q-former which has the
same architecture as the Q-Former in BLIP-2 (Li et al., 2023a). However, to maintain the temporal
consistency of video and audio frames in the ITT setup, we replace the Q-Former adaptor layers with
2-layer transformer blocks with self-attention (Vaswani, 2017). During both training and inference,
we sample 64 frames from the video and we extract five 3-second windows for the audio. The audio
is resampled to 16KHz sampling rate and converted into spectrograms to be consistent with the input
to the ImageBind model (Girdhar et al., 2023). We use 100 as the value of K, the learnable time
tokens in Section 4.2.
Training details. During both the pre-training and fine-tuning stages, we train the model for one
epoch on 8 NVIDIA A-100 GPUs. For the pre-training stage, we set the batch size of 64, learning
rate of 1e-3 with a cosine learning decay and a warm-up period. In the fine-tuning stages, we set the
batch size to 32, learning rate to 2e-5 with a cosine learning decay and a warm-up period and gradient
accumulation to 2. Further details about training are given in Appendix D.

Table 5: Evaluation results for OMCAT and other state-of-the-art models on AVQA tasks (Yang et al.,
2022b; Alamri et al., 2019; Li et al., 2022), Charades-STA (Gao et al., 2017) and our proposed
OCTAV-ST dataset. While † describes results from models fine-tuned on the training set of those
datasets, results in parentheses are zero-shot.

Method Time Accuracy R@1(IoU=0.5) R@1(IoU=0.7) Accuracy

AVSD Music-AVQA AVQA Charades-STA
OCTAV-ST
Youcook2

OCTAV-ST
ActivityNet

PandaGPT (Su et al., 2023) ✗ 26.1† 33.7 79.8† - - x
Video LLaMA (Cheng et al., 2024) ✗ 36.7† 36.6 81.0† 3.8 0.9 x
MacawLLM (Lyu et al., 2023) ✗ 34.3† 31.8 78.7† - - x
AVLLM (Shu et al., 2023) ✗ 52.6† 45.2 - - - x
AVicuna (Tang et al., 2024) ✓ 53.1† 49.6 - - - - -
Video LLaMA 2 (Zhang et al., 2023) ✗ 53.3† 73.6† - - 9.14 10.55
GroundingGPT (Li et al., 2024) ✓ - - - 29.6† 11.9† 1.20†(3.87) 1.57†(7.6)

OMCAT (RoTE) ✓ 49.4 † 73.8†(51.2) 90.2† 32.3† 15.9† 16.9†(9.9) 19.0†(11.2)

5.1 QUANTITATIVE RESULTS

Comparison to state-of-the-art. We follow previous work (Cheng et al., 2024; Zhang et al., 2023;
Shu et al., 2023) to evaluate OMCAT on three audio-video understanding benchmarks. Based on the
GPT-assisted evaluation scores in Table 5, our model surpasses the most recent and relevant models
on all benchmarks. While on Music-AVQA we achieve 51.2% accuracy in the zero-shot setting and
73.8% in the fine-tuned setting, outperforming SOTA models, on AVQA dataset we significantly
outperform other models. We believe our competitive but relatively lower scores on AVSD comes
from a difference in data distribution during the final training stage.
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To evaluate temporal understanding in videos, we evaluate OMCAT Charades-STA, an established
benchmark for this task. We outperform GroundingGPT (Li et al., 2024) on Recall@1 at IoU
threshold of 0.5 and 0.7. This result shows that our method can also perform temporal understanding
in the video domain.

Finally, we present results on the single-turn version of our proposed OCTAV benchmark, OCTAV-ST.
We evaluated VideoLLaMA2 (Zhang et al., 2023) in a zero-shot setting on this dataset and fine-
tuned GroundingGPT (Li et al., 2024) on the OCTAV-ST training set for a fair comparison. As
shown in Table 5, our method outperforms all the above two methods in both the zero-shot (results
in parantheses) and fine-tuned settings. These results confirm OMCAT’s ability to jointly learn
cross-modal and temporal understanding from both video and audio data.
Table 6: Results of different variations of OMCAT (RoPE, ITT and RoTE) on the OCTAV-MT
benchmark and the UnAV-100-MT dataset.

Method Accuracy
OCTAV-MT-Youcook2 OCTAV-MT-ActivityNet UnAV-100-MT

GroundingGPT (Li et al., 2024) 0.13 0.07 13.2

OMCAT (RoPE) 3.3 2.4 15.7
OMCAT (ITT) 3.1 4.1 16.6
OMCAT (RoTE) 3.7 5.6 19.9

Comparison on the OCTAV-MT benchmark. In Table 6, we highlight the performance of
OMCAT on the OCTAV-MT benchmark, which involves multi-turn question-answer pairs for videos
with multiple sound events. All models in Table 6 are fine-tuned on the proposed OCTAV-MT
benchmark. Our model, OMCAT with RoTE, significantly outperforms the baselines—ITT, RoPE, and
GroundingGPT (Li et al., 2024)—on this dataset. Moreover, it achieves substantial performance gains
on the UnAV-100-MT dataset, a dataset with in-the-wild/natural audio-visual events (e.g. Figure 7).

OMCAT with RoTE efficiently integrates time representations with minimal computational cost,
ensuring precise cross-modal alignment between audio and video. While these improvements over
the baselines are considerable, there is still ample room for further enhancement in this area. The
OCTAV-MT benchmark paves the way for the development of advanced multimodal models with
stronger cross-modal grounding capabilities.

Table 7: Effect of applying various time embeddings–RoPE, ITT and RoTE to OMCAT on all
benchmarks.

Time
Encoding Accuracy R@1(IoU=0.5) R@1(IoU=0.7) Accuracy

AVSD Music-AVQA AVQA Charades-STA OCTAV-ST-Youcook2 OCTAV-ST-ActivityNet
RoPE 45.9 71.2 88.2 30.7 16.1 13.3 16.5
ITT 47.3 69.7 82.1 32.5 16.7 16.5 19.2
RoTE 49.4 73.8 90.2 32.3 15.9 16.9 19.0

Table 8: Effect of alignment tuning data on the overall performance. LP denotes LLaVA-Pretrain-
595k (Liu et al., 2024), WC denotes WavCaps (Mei et al., 2024) and, V denotes Valley-703K (Luo
et al., 2023).

Ablation Music-AVQA Charades-STA (R@1,IoU-0.5) OCTAV-ST-Youcook2
OMCAT w/ only LP,WC,V 50.6 26.9 4.97

Ours 51.2 32.3 16.9

5.2 ABLATION STUDY

How does time embedding affect OMCAT? In Table 7, we evaluate three different time embedding
approaches, including RoPE (Su et al., 2024), and our proposed approaches ITT and RoTE. On the
AVQA benchmark, RoTE consistently outperforms the baselines by a large margin, demonstrating
its strong capability not only on temporal and cross-modal tasks but also in handling coarse-grained
question answering.

For the temporal understanding task on Charades-STA, ITT performs slightly better than RoTE at
both IoU thresholds (0.5 and 0.7). On the OCTAV-ST benchmark, YouCook2 and ActivityNet, ITT
and RoTE show nearly equivalent performance. We believe ITT’s competitive results stem from its
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explicit time embedding through time tokens. However, given ITT’s increased context length and its
weaker performance on AVQA tasks, RoTE is the more effective and efficient choice overall.
What is the effect of pre-training data on OMCAT? Furthermore, we investigate the impact of
pre-training data on the final model performance, particularly during the alignment tuning stage (Stage
I). This stage is crucial for establishing the model’s capacity to “align” information across different
modalities, such as image, video, and audio, with text. To examine the role of joint multimodal data,
we conduct an ablation study where we modify the training data by excluding the audio-video-text
paired data (Chen et al., 2023b;a) while retaining image-text (Liu et al., 2024), video-text (Luo et al.,
2023; Wang et al., 2019), and audio-text pairs (Mei et al., 2024).

Our results in Table 8 indicate a noticeable decline in performance across all tasks when the model is
trained without audio-video-text data. This demonstrates the critical importance of joint multimodal
data in achieving robust cross-modal alignment. We hypothesize that without data that directly links
audio, video, and text, the model struggles to accurately capture the intricate relationships between
these modalities, leading to suboptimal performance in tasks requiring fine-grained multimodal
understanding.

Figure 3: Qualitative comparison of OMCAT with GroundingGPT on the OCTAV-MT dataset.
5.3 QUALITATIVE RESULTS

In Figure 3, we showcase the qualitative performance of our method on the YouCook2 subset of
the OCTAV-MT benchmark. GroundingGPT inaccurately predicts a uniform activity of dough being
kneaded, failing to capture the nuanced transitions in events triggered by sound cues. In contrast, our
model successfully isolates specific events and accurately associates them with their corresponding
timestamps based on the sound events. For instance, our model correctly identifies the activity
following the sound of cracking fire (around 6.4 to 27.6 seconds), predicting that flour, cornmeal, and
salt and pepper are combined. This aligns closely with the ground truth, which describes the activity
as cornmeal, flour, salt, pepper, sugar, and baking powder being mixed. While OMCAT omits some
ingredients, it still recognizes the correct activity—unlike GroundingGPT, which mistakenly predicts
dough being kneaded.

Similarly, OMCAT accurately predicts that egg and milk are added into the dry mixture and whisked
following the sound of footsteps (from 29.2 to 30.5 seconds). However, when asked what occurs
before the sound of footsteps, the model correctly predicts the activity as ingredients being mixed in
the bowl, though the prediction does not perfectly match the ground truth.

6 CONCLUSION
In this paper, we addressed the limitations of multimodal large language models in fine-grained, cross-
modal temporal understanding by introducing the OCTAV dataset and the OMCAT model. OCTAV
focuses on event transitions across audio and video, promoting deeper temporal alignment and
cross-modal understanding. OMCAT, enhanced with RoTE embeddings, effectively grounds temporal
information across modalities, leading to superior performance on Audio-Visual Question Answering
(AVQA) tasks and the OCTAV benchmark. Our approach sets a new standard for multimodal AI,
advancing cross-modal and temporal reasoning capabilities for future research.
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APPENDIX

A DEMO PAGE LINK

The link to our demo page is https://om-cat.github.io/.

B PROMPTS FOR GENERATING OCTAV DATASET

In this section, we discuss further details about generating our proposed dataset.

B.1 PROMPTS FOR OCTAV-ST DATASET

Below we show the prompts used to generate question-answer pairs for the video conditioned on a
single audio event i.e. OCTAV-ST dataset.

You are an AI assistant that can analyze a video. You receive timestamped video and audio
captions with start time and end times describing the video you are observing. Based on these
audio and video captions, create 2 question and answer pairs where a question is asked by the
person (the user) and the answer is given by you (the assistant) about the events in the video/audio.
Here are some additional requirements about the generated question-answer pairs:
1. The question asked by the user should be from the audio caption and the answer given by the
assistant should be from the video caption before or after that timestamp in question.
2. Only describe what you are certain about, and avoid providing descriptions that maybe
ambiguous or inaccurate.
4. The number of words in the answer should not exceed 100 words. Keep it as concise as possible.
You do not need to include everything in the answer.
Include timestamp information in the answers.

Example 1:
Timestamped video and audio captions:
“video caption 1”: season the chicken on both sides with salt and pepper then cut it into pieces
from 0.0 to 18, “video caption 2”: put the chicken pieces to a boiling pot of water cover it and let
it cook from 20 to 22, “audio caption”: There is a sound of Trumpet from 18 to 20.

QA:
User: What is happening in the video before the sound of trumpet? Assistant: The sound of
trumpet is from [18.0, 20.0]. From [0.0, 18.0], the chicken is seasoned on both sides with salt and
pepper then cut it into pieces.
User: What is happening in the video after the sound of trumpet? Assistant: The sound of trumpet
is from [18.0, 20.0]. From [20.0, 22.0], the chicken pieces are put to a boiling pot of water,
covered and then cooked.

Based on the example above, design 2 question and answer pairs between the user and assistant
for the example given below.
Format each QA pair in a single line as a JSON dictionary (key “user” for question, and “assistant”
for answer).

B.2 PROMPTS FOR OCTAV-MT DATASET

Below we show the prompts used to generate question-answer pairs for the video conditioned on two
audio events i.e. OCTAV-MT dataset.
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You are an AI assistant that can analyze a video. You receive timestamped video and audio
captions with start time and end times describing the video you are observing. Based on these
audio and video captions, create 4 question and answer pairs where a question is asked by the
person (the user) and the answer is given by you (the assistant) about the events in the video/audio.
You can ask clarification questions if the question asked by the user is not clear. Here are some
additional requirements about the generated question-answer pairs:
1. The question asked by the user can be from the audio caption or the video caption and the
answer given by the assistant should be from the video caption before or after that timestamp in
question.
2. Only describe what you are certain about, and avoid providing descriptions that maybe
ambiguous or inaccurate.
4. The number of words in the answer should not exceed 100 words. Keep it as concise as possible.
You do not need to include everything in the answer.
Include timestamp information in the answers.

Example 1:
Timestamped video and audio captions:
“video caption 1”: season the chicken on both sides with salt and pepper then cut it into pieces
from 0.0 to 18, “video caption 2”: put the chicken pieces to a boiling pot of water cover it and let
it cook from 20 to 22, “video caption 3”: chop celery to small pieces chop cheese to cubes and
chop ham also to the same size from 26 to 50, “audio caption 1”: There is a sound of laugh from
18 to 20, “audio caption 2”: There is a sound of laugh from 22 to 26.

QA:
User: What is happening in the video after the sound of laugh? Answer with start and end
timestamps.
Assistant: There are two sounds of laugh, one from [18.0, 20.0] and the other one from [22.0,
26.0]. Which laugh are you referring to?
User: I am referring to the laugh that happens after the chicken pieces are out to a boiling pot of
water.
Assistant: Okay, so the laugh from [22.0, 26.0]. After this sound of laugh from [26.0, 50.0], celery
is chopped to small pieces, cheese is chopped to cubes and ham is chopped also to the same size.
User: Thanks, what is happening in the video after the chicken is seasoned on both sides with salt
and pepper. Answer with start and end timestamps.
Assistant: There is a sound of laugh from [18.0, 20.0] and from [20.0, 22.0], the chicken pieces
are put ot a boiling pot of water, covered and cooked.
User: Thanks, what is happening in the video after the sound of bird chirping? Answer with start
and end timestamps.
Assistant: Sorry, there is no sound of bird chirping.

Based on the above examples, design 4 question and answer pairs between the user and assistant
for the example given below.
Format each QA pair in a single line as a JSON dictionary (key ”user” for question, and ”assistant”
for answer, wrapped with and ).

B.3 LIST OF INSTRUCTIONS

Below, we show the diverse set of instructions that we use to replace the common instruction What
is happening in the video generated by the GPT model. The eventname below is replaced by the
anchored query such as after the sound of bird chirping.
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Start and end timestamps should be included while describing what eventname is.

Please include the start and end time when briefly describing what eventname entails.

Start and end timestamps are required while providing a brief description of what eventname
involves.

Include the exact start and end times when describing what eventname refers to.

Ensure to mention the start and end timestamps when explaining what eventname covers.

With the start and end times, please provide a brief explanation of what eventname is.

Start and end timestamps should be given alongside a description of what eventname involves.

When describing what eventname is, include the exact start and end time information.

Include start and end time details when summarizing what eventname entails.

Start and end timestamps must be specified when giving a brief description of what eventname
refers to.

Describe what eventname is with start and end timestamps.

Please briefly describe what eventname entails, including its exact start and end timestamps.

Provide a brief description of what eventname includes, along with the start and end times.

Give a short description of what eventname is, including the precise start and end time details.

Briefly explain what eventname involves, including its start and end timestamps.

Please summarize what eventname covers, specifying the start and end timestamps.

Give a brief explanation of what eventname is, making sure to include both the start and end
times.

Could you describe what eventname refers to, including the exact start and end times?

Please provide a concise overview of what eventname involves, along with start and end time
details.

Could you explain what eventname is, ensuring the start and end timestamps are included?

B.4 SOUND EVENTS

In this section, we provide details about the datasets we used for adding sound to the curated chunked
videos as discussed in Section 3. Specifically, we use Urban Sound 8K (Salamon et al., 2014),
ESC-50 (Piczak, 2015), FSD50K (Fonseca et al., 2021) and NonSpeech7K (Rashid et al., 2023)
datasets.

Urban Sound 8K (Salamon et al., 2014) is an audio dataset that contains urban sounds from 10 classes:
air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer,
siren, and street music.

The ESC-50 dataset (Piczak, 2015) consists of 5-second-long recordings organized into 50 semantical
classes that can be categorized into 5 major categories of animals, natural soundscapes & water
sounds, human and non-speech sounds, interior/domestic sounds and exterior/urban noises.
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FSD50K (Fonseca et al., 2021) has 200 sound categories mainly produced by physical sound sources
and production mechanisms, including human sounds, sounds of things, animals, natural sounds,
musical instruments and more.

Nonspeech7k (Rashid et al., 2023) contains a diverse set of human non-speech sounds, such as the
sounds of breathing, coughing, crying, laughing, screaming, sneezing, and yawning.

C EXAMPLES FROM THE OCTAV DATASET

In Figure 4, we show examples from the OCTAV-ST dataset. The top part of the figure shows an
example from the ActivityNet subset and the bottom part shows an example from the Youcook2 subset
of the dataset. These examples give an overview of how different event transitions are interwoven
seamlessly with an audio event.

In Figure 5 and Figure 6, we show examples from the ActivityNet subset and the Youcook2 subset
of the OCTAV-MT dataset respectively. These examples show the anchoring of transitioning video
events on multiple sound events.

In Figure 7, we show an example from the UnAV-100-MT dataset, which is the multi-turn version
of the UnAV-100 dataset (Geng et al., 2023). We convert the audio-visual timestamped annotations
from the UnAV-100 dataset into multi-turn question answers as shown in this example. This dataset
acts as a benchmark for a real time setting of audio-visual scenarios.
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Sound of Jackhammer

0 s 13 s 16 s 23 s

Instruction:
With the start and end times, please provide a brief explanation of

what is happening in the video before the sound of laugh.

Instruction:
Please briefly describe what is happening in the video after the
sound of laugh, including its exact start and end timestamps.

The sound of laugh is from 13 to 16 seconds.
From 16 to 23 seconds, she shows a bag,
pushing on it with her fist.

The sound of laugh is from 13 to 16 seconds. From
0 to 13 seconds, a woman is standing in a
kitchen while talking.

Sound of laugh

ActivityNet

Youcook2

0 s 9 s 17 s 25 s

Instruction:
With the start and end times, please provide a brief explanation of
what is happening in the video before the sound of jackhammer.

Instruction:
Please briefly describe what is happening in the video after the
sound of laugh, including its exact start and end timestamps.

The sound of laugh is from 13 to 16 seconds. From
0 to 13 seconds, a woman is standing in a
kitchen while talking.

The sound of jackhammer is from 9 to 17
seconds. From 17 to 25 seconds, eggs are
being boiled in a pot of water.

Figure 4: Question-answer pairs from the proposed OCTAV-ST dataset.

ActivityNet

0 s
25 s

User: Please summarize what is happening in the video after the sound of children playing, specifying the start
and end timestamps.
Assistant: There are two sounds of children playing, one from 6 to 7 seconds and the other one from 16 to 17
seconds. Which one are you referring to?

User: I am referring to the sound that happens after the words are shown on the screen.
Assistant: Okay, so the sound of children playing from from 6 to 7 seconds. After this sound, from 7 to 16
seconds, a man is talking while standing outside in front of a hill.

User: Could you explain what is happening in the video after the man is talking while standing outside in front
of a hill, ensuring the start and end timestamps are included?
Assistant: There is a sound of children playing from 16 to 17 seconds and from 17 to 25 seconds, the man is
holding a shovel standing in front of a small tree.

User: Could you describe what is happening in the video after the sound of bird chirping, including the exact
start and end times?
Assistant: Sorry, there is no sound of bird chirping in this video.

Figure 5: Multi-turn dialogue examples from the ActivityNet subset of our OCTAV-MT dataset.
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Youcook2

0 s 50 sUser: Please briefly describe what is happening in the video after the sound of street music, including its exact
start and end timestamps.
Assistant: The sound of street music is from 15 to 23 seconds. From 23 to 40 seconds, carrots are grated and
transferred to the big bowl.

User: Briefly explain what is happening in the video before the sound of gun shot, including its start and end
timestamps.
Assistant: The sound of gun shot is from 40 to 41 seconds. From 23 to 40 seconds, carrots are grated and
transferred to the big bowl.

User: Start and end timestamps should be given alongside a description of what is happening in the video after the
sound of gun shot.
Assistant: The sound of gun shot is from 40 to 41 seconds. From 41 to 50 seconds, diced onion and garlic are
added to the bowl.

User: When describing what is happening in the video before the sound of street music, include the exact start
and end time information.
Assistant: The sound of street music is from 15 to 23 seconds. From 0 to 15 seconds, purple cabbage is
processed and transferred to the big bowl.

Figure 6: Multi-turn dialogue examples from the Youcook2 subset of our OCTAV-MT dataset.
UnAV-100-MT

0 s
48 s

User: Ensure to mention the start and end timestamps when explaining what is the first sound in the video.
Assistant: The first sound in the video is a police car siren from 0 to 29 seconds.

User: Please summarize what happens after the first police car siren, specifying the start and end timestamps.
Assistant: After the first police car siren, there is an engine knocking from 29 to 36 seconds.

User: Include the exact start and end times when describing what happens after the engine knocking sound.
Assistant: After the engine knocking sound, there is a police car siren from 36 to 48 seconds.

User: Give a brief explanation of what is the last sound in the video, making sure to include both the start and end
times.
Assistant: The last sound in the video is a police car siren from 36 to 48 seconds.

0 s 29 s 36 s 48 s

Figure 7: Multi-turn dialogue examples from the UnAV-100-MT dataset.

D TRAINING DETAILS

The training settings for our model are spread across three stages, each with specific configurations.

Stage 1 utilizes a batch size of 64 and a learning rate of 1e-3, employing a cosine decay learning
schedule. The warm-up ratio is set at 0.03, with no weight decay applied. This stage runs for 1
epoch with gradient accumulation of 1. Additionally, it employs the ZeRO2 optimization strategy in
DeepSpeed (Rasley et al., 2020) and utilizes 8 A100 GPUs.

Stage 2 has a smaller batch size of 32 and reduces the learning rate to 2e-5. It follows the same
warm-up ratio of 0.03 and applies no weight decay. Like Stage 1, this stage runs for 1 epoch but
increases gradient accumulation to 2. The same DeepSpeed optimization and GPU configuration are
used.

Stage 3 mirrors the settings of Stage 2, with a batch size of 32, a learning rate of 2e-5, and a warm-up
ratio of 0.03. It also has no weight decay and runs for 1 epoch with gradient accumulation set to 2.
We use the same DeepSpeed optimization and 8 A100 GPUs like the previous stages.

E MORE RESULTS

In Table 9, we showcase the zero-shot performance of our proposed OMCAT model on the video
understanding benchmarks MSRVTT-QA (Xu et al., 2016), MSVD-QA (Chen & Dolan, 2011), and
ActivityNet-QA (Yu et al., 2019). Although our model’s performance falls short compared to Video
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LLaMA 2 (Cheng et al., 2024) and AVicuna (Tang et al., 2024), it remains competitive with other
models in the field (Li et al., 2024; Zhang et al., 2023; Li et al., 2023b). We attribute AVicuna’s
higher performance to its instruction tuning with ActivityNet captions (Krishna et al., 2017) and
its specialization in video understanding during the final training stage. Similarly, Video LLaMA
2 (Cheng et al., 2024) is also an expert model, having been trained on a significantly larger video-text
dataset throughout all training phases, unlike OMCAT.

We further assess our method’s effectiveness in audio understanding by evaluating it on the Clotho-
AQA (Lipping et al., 2022) dataset, where OMCAT achieves a score of 54.3% in audio question
answering. In comparison, the audio expert model Qwen-Audio (Chu et al., 2023) scores 57.9%,
while Video LLaMA 2 reaches 59.7%. Our model demonstrates competitive performance on this
benchmark; however, we believe that the extensive audio-text training data utilized by these two
models contributes to their superior results. Moreover, we use Imagebind (Girdhar et al., 2023)
as our audio encoder whereas these models use a far more superior audio encoder pre-trained on
a large-scale audio-text data unlike Imagebind (Girdhar et al., 2023). It is worth noting that this
aspect was beyond the scope of our work, which primarily focuses on temporal and cross-modal
understanding of audio and video.
Table 9: Performance comparison on video understanding benchmarks. † means specialized model
and ∗ means trained on a much larger dataset.

Method Modality MSRVTT-QA MSVD-QA ActivityNet-QA
VideoChat (Li et al., 2023b) Video 45.0 56.3 26.5
Video-ChatGPT (Maaz et al., 2023) Video 49.3 64.9 35.2
Valley (Luo et al., 2023) Video 45.7 65.4 42.9
Video-LLaMA (Zhang et al., 2023) Video 29.6 51.6 12.4
PandaGPT (Su et al., 2023) Video, Audio 23.7 46.7 11.2
MacawLLM (Lyu et al., 2023) Video, Audio 25.5 42.1 14.5
AVLLM (Shu et al., 2023) Video, Audio 53.7 67.3 47.2
GroundingGPT (Li et al., 2024) Video, Audio 51.6 67.8 44.7

AVicuna† (Tang et al., 2024) Video, Audio 59.7 70.2 53.0
Video LLaMA 2∗ (Cheng et al., 2024) Video, Audio 53.9 71.7 49.9

OMCAT (RoPE (Su et al., 2024)) Video, Audio 49.3 63.2 41.9
OMCAT (ITT) Video, Audio 51.1 65.1 43.9
OMCAT (RoTE) Video, Audio 51.2 67.8 46.6

F LIMITATIONS AND FUTURE WORK

Here, we outline some limitations that are important considerations for future work.

First, the OCTAV dataset consists of sounds that are non-overlapping and distinct, which simplifies
the learning and classification process. However, in real-life scenarios, sound events often overlap,
occur simultaneously, and can be highly ambiguous. This makes sound detection and classification
far more complex. Thus, a natural extension of our work would be to incorporate sound data that
reflects more in-the-wild conditions, where sounds are less controlled, overlap frequently, and can
exhibit high variability in intensity and duration. Adapting the dataset to represent such real-world
complexities will enhance the robustness and applicability of the model in practical applications.

Second, our proposed OMCAT model employs the CLIP visual encoder (Radford et al., 2021) as
the video encoder, which focuses on frame-based visual representations. While CLIP has demon-
strated strong capabilities in multimodal learning, it lacks explicit modeling of temporal dynamics
between video frames. Given that many real-world events are temporally dependent—especially in
video sequences—using a video-based encoder that captures temporal consistency, such as those
designed for action recognition (Ren et al., 2024), would likely result in more accurate and nuanced
representations of events. In future work, we aim to explore alternative video encoders that model
temporal aspects of video more effectively, enabling better alignment between the visual and audio
modalities in complex, dynamic environments. This could lead to more sophisticated models capable
of handling temporal dependencies and multi-event interactions in both visual and audio data.

Third, currently the dataset consists of short-length videos (∼30-40 seconds), extending the dataset
to long videos would be extremely beneficial for practical applications. Longer videos would provide
more comprehensive context, allowing models to better capture temporal dependencies, complex
patterns, and interactions that unfold over extended periods. Moreover, long-duration videos would
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enable more robust testing and evaluation in real-world scenarios, where short clips often fail to
represent the full dynamics of real-time events. Expanding the dataset in this way would lead to more
accurate models and improve their generalizability across a broader range of applications.
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